If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2+10y+1=0
a = 5; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·5·1
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{5}}{2*5}=\frac{-10-4\sqrt{5}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{5}}{2*5}=\frac{-10+4\sqrt{5}}{10} $
| 4(2x-1)=-2(x+2)= | | 2x+8=5x+13 | | (2x+)(x+2)=0 | | 4/2x+1-45/5x+3=-21/3x+2 | | (x-3)²=x²+4x+29 | | 35p+5/12=15 | | 2x/3+-x/2=-x+5 | | 9x+4x=30+5 | | x^2-19x+36=0 | | 2x-(12-x)=3 | | (2x+1)-(x-5)=9 | | y-8=2y+1 | | 2400/x-2400/x+10=8 | | 2(4x-5)-4(2x-3)=2(x-1) | | 7(x/3-3)=28 | | 10-3/4x=-2 | | (12x+6)=30 | | (12-6x)=4x-6 | | 7-p=77 | | 3/n=24/5.6= | | 8/3x5=-1 | | 8/3x-5=1 | | 9x−1= 10x+910x+9 | | 3(y–2)=6(y–1)–3y | | -2x(3x-4)=0 | | -2x(3-4)=0 | | 3a+2=4a+9 | | 8x-2/2+2x+7/9=4 | | 9x-18/4+2=2x | | x+4/5=x-4 | | 3x-9/2=-3 | | 3(3x+2)=-2(2x-4) |